AD-A135 858

UNCLRSSIFIED

gN MODIFICATIONS DF THE ZRKHHROV EQUATION FOR SURFACE

YITY WAVES(Y) TECHNION - ISRAEL INST
M STIASSNIE ET AL. JUL 83 DRJHK? 82-C-08388

OF TECH HRIFR
F/G 12/1




S e s AW | OGAA P T RASAIYY P SRR

a4 alage,r

2

e
»
--

et

'FFEE
S EEE 4._

KEEEETTT

=l =i
— N

DR LR A VPN

RS RNR TY
.
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

2

I
i

.»Q%;ﬁﬂv*. P 2. L % ¥ B PR B e oy =y £




ON MODIFICATIONS OF THE ZAKHAROV EQUATION
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Zakharov integral equation for surface gravity waves is modified
to include higher order (Class II) interactions, for water of
constant (finite or infinite) depth. This new equation is used
to study some aspects of Class I and Class 1I instabilities of a
Stokes wave.
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1. Introduction

Our understanding of nonlinear dynamics of deep water gra&ity waves
has grown substantially in recent years. We feel that the lion's share of
this progress should be attributed to the staff of the TRW Fluid Mechanics
Department. Most of their findings are summarized in an extensive review
article by Yuen & Lake (1982), which served as our main reference. Much of
this progress is based on applications of the so-called Zakharov equation
which was originally derived by Zakharov (1968) for infinitely deep water..
In order to extend the range of application we re-derive Zakharov's equation
for finite water depth (in section 2) and show its relations to the cubic
Schrodinger equation and to Hasselmann's nonlinear interaction model (in
section 3). It is generally accepted now that the Zakharov equation is
VSuperior to all other existing approximate models as far as Class I inter-
actions are concerned.

Lo g

The term 'Class I interactions' refers to nonlinear interaction
processes at the lowest possible order; for surface gravity waves this
occurs at third order in the nonlinearity parameter €. Generally speaking,
Class I 1nteractions'require the coexistence of resonating, or nearly ]
resonating, wave quartets. The time scale of Class I interactions is e P g
where- P {is a typical wave period.

The structure of the surface gravity wave dispersion relation does not
enable nonlinear interaction at shorter time scales (e "P) which occur in
many other physical systems,(e.g., capillary waves).

While Class I interactions are basically four wave interactions, the
special case where one of the waves is taken into account twice so that
only three waves are considered, has attracted much attention. These cases :4
which lead to what sometimes is called Benjamin-Feir instabilities, display
many of the features of the more general quartet interaction. Interactions ,
including a smaller number of waves — as two waves each taken into account ’ '

. r—————

twice, or one wave taken into account four times — are also possible, but
display a degenerated type of interaction which manifests itself in Stokes-
type second order corrections of the frequency (see Longuet-Higgins and




Phillips 1962). Numerical linear stability analysis of the exact finite
amplitude Stokes wave, by McLean (1982a,b), as well as experimental evidence

by Su et. al. (1982) and Su (1982), reveal the importance of Class 11 inter-

actions, which are basically quintet interactions. These, much less studied
interactions, occur at fourth order in € and have a tvpical time scale of
e-3P. Nevertheless, for high enough steepnesses McLean's study shows that
Class II instabilities become dominant. Here again, three waves — one of
them is taken into account three times — form a nearly rescnating quintet
and display many interesting features. In the second half of section 2 we
extend the derivation to fourth order and derive a modified form of the
Zakharov equation which accounts for both Class I, and the higher order,
Class II, interactions.

) In section 4, we use this equation to study the linear stability of a
uniform wave train. The solution of certain long line evolution problems
is under way and will be reported at a later stage.
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2. The governing equations

The equations governing the irrotational flow of an .ncompre551b1e,
inviscid fluid with a free surface are:

-

v =0, -h<z<n(x,t), (2.1}
n + (V¢) -(Vn)=-¢,=0
. ‘ z = nlx,t) (2.2a,b)
.+ (ve) 2+ g2=0 -

§,=0, Z=-h, | (2.3)

where ¢ is the velocity potential, n is the free surface, and g is the
gravitational acceleration. The horizontal coordinates are (xl,xz) = x, the

vertical coordinate z is pointing upwards, h is the mean water depth, and
t is the time.

The- free surface boundary cond1t10ns Eq. (2.2),are rewritten in terms

of ¢> and w* = ( | » the velocity potential and the vertical velocity
component at the free surface. respectively

n, + (9,0°)-(,n) - w*[1 + (V)] = 0 (2.4a)
2
¢: +gn + %-(V,gb’)’- 3—'2'3-) [‘1+(vxn)’]- 0 (2.4b)

The horizontal Fourier transform of these equations yields

Aot - oh [ (k)37 (h) Al tdtick ook, dk,- &
) et e
*@n? JI] k) gt 6 (kgt) & (kokyky-k; )k dk;dk = 0 (2.5a)
«td . 5a
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- ([ Wk, t) 850k, 0t) 6 (k-k, -k ) dk, dk, + :
4 =1 =227 0T TRy R Ry ¢ :
- é
1 s .
—_ -k , -k -k, ) -
gt J[]] G580 00 B 0 (g R, )k Kk ) |
e r
d&l dl(z. d£3 d&ur : (2.5b)
where the two dimensional Fourier transform of a function f(x) is given by E
A _ ] Xox |
Fe) = g [ floeT 2y, i
and Dirac & function is defined as
- _ : © i‘k..é
LGNS ER St

Taking the Fourier transform of Laplace Eq. (2.1), and satisfying the
boundary condition at the bottom, Eq. (2.3), gives

$(k,z,t) = &(k,t)ch(|k ".+h)), (2.6)

which enables one to write ¢~ and w° in terms of 8(k,t) and n(x,t)
as follows

0" (x,t)= 2—‘[ ®(k,t)[ch(|k|h)ch(]kIn(x t))+sh(|k[h)sh(|k|n(x t))] e X dk

et . (2.7a)
ws(a,t)= 2% |k|®(k,t)Lch(|k[h)sh(|k|n(x,t)}+sh{ |k|n)ch({|k|n(x,t))]e ~

-

|k-x

(2.7b)
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The next step in the derivation is to express Qs as a function of n and 85.
This is the first step which requires an additional physical assumption.
Assuming that |k|n 1is small, we pursue the following procedure:' (i) replace
sh(|k|n) and ch(]|k|n), in"Eqs (2.7a,b), by their Taylor series expansions

up to order (|k|n)®; (ii) express n by means of its Fourier tranform 1 ;
and finally, (iii) take the Fourier transform of Eqs.(2.7a,b),

I SR
Aiadad i iiidil

3°(kt)= B(k.theh( [k]h)+ - ”.[Lllsh([gf[h)s(k IRk )8 (kk, -k ) dic die + ’
i

=3 -lélz - | X R R
*am || T et Imdeg, IR R 8Kk K -k )k dk dk_+

i e o

1 1k 1 are ar imrl a
"'(2_“)3 ILI T Sh(Igh)¢(l‘_l:t)n(%st)n(%st)n(&at)a(i’_kﬂ..l.(.z-%-ih)
s a 1 2 ® n 1
W (k,t) = [K|3(k,t)sh(]k|h)+ g;ﬂl.k_,l ehtlk, Imel tin(k ,t)o(k-k -k Jdk dk + E
m Ik, " sh(lk, IM3(k, )Rk, £IR(K, £)8Lk-K, -k, k )k dk dk  +
(2.".) ’ =1=27-3" -1 =273
v Ml 5 ~k )R A
* Gy J LU e ohllk IMBlk ol Rk LR, ) (kk kk k) -
Sk dx ok dk | (2.8b) |

Inverting Eq. (2.8a) iteratively, in order to obtain o= & (35), and
substituting the result into Eq.(2.8b), yields
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. W (k,t)= [k|th(|k|h)gS(k,t) - e
F: - 1 - ~S -~ \ ":4
& : - —— k ki th k - ~k - -
7 [] 18 IR enCL Ind=liy 1987 (k0 stk Yo -
- ~= 4 1
: (0
v, 1 AS ~ ~ .
> -5 ok .k Lk k , . - -k <k - -
; . (2,,,4 [ S koky ko ke (K Stin(k, thn(k,,t)e(k-k -k, k3 )k, dk dk,
; - | ’
o ;
- ” S(z)(k k ok sk Lk )BTk LAk LAk L6 Ak ,t)8(k-k -k -k -k ) :
% (2m)* S % Ry 1L NG Uinlhy s tinlk 1) ke, ke ok oK) :
-t ol
d dk dk . B
k dk dk dk, (2.9)
&
: the kernels s“)(k k.,k_,k ) S(Z)(k k.,k.,k.,k,}, as well as other 3
3 ) _:__l 29 ’_3 ’ __s_] 20 ] ’_3 syl |
kernels, which appear throughout the derivation, are given in the Appendix.
Substituting w°, from Eq. (2.9) into Eqs. (2.5a,b), multiplying Eq. (2.5a)
‘ol -— -
by e _T|% i [ etk) T
. 2w(k) » and Eq. (2.5b) by —2q ;
' where  w(k) = [g]k|th(|k|n)1*% , ~ (2.10)
v adding these equations together, and defining the new complex variable
’ , .
. — k ¥ .5
blk,t) = 1= a(k,t)+i[ (k) |7 $%(k,t)
= 2| T g
\ |
4 yields the following equation: [
bt(L’t) + i“’(_&)b(hst) +
" ) [} (‘) -- - .
: o [ V) (ol b Dbl DD, V6K K, Dk i, ¢ ;
2 = !
- j
(2) * +k - '
3 # 1[ V2l bk 0Bk )80k Dok i +
‘. -
) ?
1' .................................................................... ey '.:,\\ ------ AR N "'J
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e I v (K k)BT (R )%k $)8(kek +K )dk dk +
i pnt B NSy LA L B A B ] ]
<
s 1 f” W (ke Lkl db(k, L E)b(k ,t)b(k ,t)8(kk —k -k )d 3
54 Kok, oKy ok JbUk, S tIDK) tIBIK, )8 kb -k -k )dk dk dk, + )
F e
o3

)

t[f M ok, o DY, 0B, DB 8Lk, K ok Dk e i +

3

1 .,(3) * * .
k, » ’k b k .t b k ’ ? -
[ ¥ ek, ook I, 0"k 00l )tk Dk o e +

A *k )b Mk )8tk +k +k )dk dk dk + : :
Wl )(5,51,52,53)13 (k,»£)b"(k, , t)b¥(k, t)o(kek +k +k Jdk dk dk, 3

9, ? 9 ] k ’t k ’ b ’ . - - - -
[ ]x ol o D0, B 0B DDk D8k ko Dk e, +

() . |
j [ X Uk gkl 0y 200 (K Dby )bk, D8k kg oy byl +

Tl (3 T |
”I X" kK, .52.!_(3.5_")11 (k, »t)b (52.t)b(_k_3,t)b(jg,i,t)d(_lgjl(.lﬂ(?.%.&k )'d'&ldkzdksdih +

9, S, 3 9, * ] * k » * ? - ‘ X
(kok, ok, 53 k,)b7(k, t)b (__2 t)b (53 t)b("il;’t)a(£+£|+£2+£3 _gﬂ)dgld%d%d&h +

s gt i iaaaddd

* * * *py
J k.k, 32,3_3._15_,‘» (g_l,t)b (gz,t)b (_l33,t)b (54"‘)5(5+£\*52+53+5h)d51d52d53"5-1. ]

- (2.11)

where * denotes the complex conjugate

The relations between n, ¢s and the complex "amplitude spectrum” b are

K)1/2
Alkot) = l%:ll [b(k,t) + b*(-k,t)] (2.122)
| N
Plt) = -1}7@%\ / [blk,t) - b*(-k,t)] (2.12b)

.....
-----------------------------------------
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We assume that the wave field can be divided into a slowly varying (in time)
component B and small rapidly varying components B', B", B"' and'that most

of the energy in the wave field is contained in B. These assumptions permit
one to write

B . 20, " _
b(&;t) = [EB (‘E’tzx3) + ¢ B (_k_,t ’tz ’t3) + CBB (l(.’t ’tz ,t3) + |
+ 548“'(53t.t2;3)]e-iw(ﬁ)t (2.13).

where ¢ is a small paﬁhmeter representing the magnitude of nonlinearity, and
the slow time ccales are defined by t2 = ezt, t_ = eBt. The omission of the
slow time t, = et from Eq. (2.13) results from the fact that resonating triads
do not exist for surface gravity waves. Substituting b, from Eq. (2.13), into
Eq. (2.11) and arranging the terms according to their order in e yields the

following results:

""Order € - is satisfied identically

sygg:_sz - gives an equation for B'

. 8B' _ (1) %3 'i(w-w]-wz)t (2) =*s "(wﬂn]-mz)t
b II {Vp,1,28182%0-1-28 * ¥p,1,281B28047-28 + :
(3) g*=* ' 'i(w+u)-|+w2)t
+ V53] JB1By8001a08 dk,dk, (2.14a)

Yhere we have introduced the compact notation in which the arguments 54 inV,
B, 8§, w, and in other functions in the sequel, are replaced by subscripts i,
with the subscript zero assigned to k. Integrating Eq. (2.14a) with respect
to t and keeping tz, t3 fixed, gives |
°°. M s s ei (w-m-l-wz)t
B = 'If Wo,1,251%%012 o w, —*
- i (wrhw -w,) )t

+ v B,B,6 +
0’1 ,2 ] 2 0+1 "2 uﬁw] -(ﬂz

i (w+m.| +w2)t

(3) *s* e

* Vo,1.288200m2 T, (2.14b)

5
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The constant of integration, which corresponds to the in%tia1 phase, has
been set to zero without loss of ‘generality.

ngg;,cB - gives the following equation

-a_.B'_ '.a_B.'_g ~(1) 8.8
Tag, 1ot IIJ {70,1,2,3 81828380123 €

#2) 55 Hwhyupmug)t
* T0,1,2,3 BiB2B3%0sr2-3 © *

§ i(“”“’1'“’2'“’3)1: +
Tty huy-u3)t
0,1,2,3 B18283%0+142-3 © +

— i (who g )t
3 ByB

I 0
1828380414243 © Ykydk,

+ §3) §'§;§

4

+ ?é’)QZ,

(2

The above equation consists of terms of two types; those which depend on the
fast time t, and those which do not. This enables us to split Eq. (2.15)
---into separate equations:

B . [[[ 2 ¥ by ~y-u;)t
1, JII 0,1,2,3 B1B2P3%0+1-2-3 © dkdkydkg  (2.16)

g =01 - . - i(w-m]-wz-w3)t
U III {73.3,2.3 B,B2836p-1-2-3 © +
=(2 2 i by wp-ug)t
*‘%AJJ'T&LaﬁBﬁﬂfmupae +
(3) e i(w*w]+m2-m3)t .

*+ T5,1,2,3 B1B2B3%04142-3 ©

(w+ "t
~(4 adeahak u>‘+mz+m3

Here we made use of the fact that the only exponent of e which may become zero,
under the restriction of the § functions, is the one in the second term in

the r.h.s. of Eq. (2.15). This fact is directly related to the definition

of a nearly resonating quartet,

...............................
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2
So+1-2-3 = 0 5 lugruy-wy-ug] < 0(%)
Equation (2.16) is the so-called Zakharov equation, with the kernel

T(2) 82% ,2,3° for near resonance quartets

0’]’2’3 = 0 (2.]9)

s, Otherwise

used as a mathematical model for Class I nonlinear interactions. Integrating
Eq. (2.17a) with respect to t gives the following result for B",

R : i {wewy —womw, )
B I J {T(]) B B;B360-1-2-3 = .
R w-w]-wz-w3
A (whwy =y w4 )t
+ (1(2) 188 VBB e 123
1.2,3 7 10,1,2,3 B1B2B3bon-2-3 T,
' i (whwy+w,-w, ) t
e 1), BBstounegs S+
] 0,1,2,3 }18283%04142-3 “ oy
1§ (kg s, +
- (a) ~*~*~* é‘l((mm-I Wy m3)t )
* T70,1,2,3 B1B2Badonisaes —oromare— 1 dkydkpdkg
17423 (2.17b)

nggg_e4:

aB aBlu aBl ~(]) .~ . o
B > R JIII{ Y0,1,2,3,481828384%0.12.3-4®

g + 5 ., 3,4818,8384%041 2-3.48 )t
* Dé?% 2,3,4 ;§2~3~B450+1+2-;-4°i(w+w]+w2-w3-w4)t *
* ﬁé?%,2,3,45;55535450+1+2+§-4ei(w+w]fw2+w3-w4)t *
* DSS% 2 3.45;525*52 0+]+2+3+4e‘(“*“ﬁ+”2+m3+w4)t}dk d52‘"‘3"-54
(2.20)
A S S A, S A A L L

(2.18a,b)

i(w-w]-mz-m3—m4)t N

......

,,,,,




In order to split Eq. (2.20) appropriately into two separate equations,

one for g%L and the other for agt which becomes relevant only in sextet
3

interactions, we make use of the fact that only the second and third integrands
in Eq. (2.20) enable resonating quintets. Similarly to Eq. (2.18), the nearly
resonating quintets are defined

: 3
S0+1-2-3-4 = 0 » 180+ -2,-05-%| < 0(e7) (2.212,b)
where nj, the "Stokes corrected" frequencies, are given by
o [ 2 i1
= 2 8.12 -

The Stokes corrected frequencies are obtained by solving Eq. (2.16) for
degenerated interactions, namely: "quartets" formed by two waves, each taken
into account twice. These corrections become necessary at the order of deriva-
tion considered here. Defining

 gle) , for nearly resonating quintets
(2) 0,1,2,3,4 :
2 _ H
Y9,1,2,3,4 =
L 0 , otherwise (2.22a)
4 ~(3) f 1 e -
(3) UO 1,2,3,4° or nearly resonating quintets
Y5,1,2,3,4 = ]
L 0 , otherwise (2.22b)

we obtain

bt | i mwa=twa ) E
3B N (2) ke - T {wrhwy —wy~wg-wy)
' at; IJJI {U9,1,2,3,481828384%047-2-3-4 © *

i(whw. ~wa=w, )t
(3) sk o . T (g, ~wa-w,
- ¥ U0,1,2,3,4 1 2633450+1+z-3-4 e dk. dk

} dk dk2 kodk,

(2.23)
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Finally, the two orders, Eqs. (2.16) and (2.23), are combined- into a single
equation for B = €B,
3B _ ([ 1(2) * i(uﬁw]-uz-.uB)tA
13t 7)) To,1,2,3 BiBBadonr oz @ dkdkydky +
- 00
T i(w"ml-wz -w,)t
[ (2) - 3 4
* I 0.1,2,3,8 B1B2B38y S0412-3.4 € iy Ak, dkdk, +
* I” 0,1,2,3,4 8188384804 142-3-4 © dk, dk,dkdk,
(2.28)

"Equation (2.24) is a modification of the Zakharov equation that accounts

for higher order interactions.
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3. Comments on Zakharov equation for finite water depth

Denoting €B by B we rewrite Eq. (2.16)

3B(k, t)

LT

Ay By y U 0,k ok B (K 0Bk, s B, 06k koo 1 20"
1R T ek X223 )87 U 1B, EIBlK3, )8 Lkrky ~kpks)e (3.1)
N | 3.1

~ The first order free surface elevation is related to B through Eqs. (2.12a),

(2.13), and is-given by
_] T w(k)y1/2
) = 7 | g

{B(x,t)ei(i'i‘“’t) + c.c} dk (3.2)

Equation (3.1) is the now well-known Zakharov equation, generalized for
water of any constant depth. The fact that Eq. (3.1) is valid for finite depth

affects only the expressions for w(k) and T(z)(g,gq,ga,gs), which become depth
dependent.

The purpose of this section is to show the connections between the Zakharov
equation and other model equations, as well as to check our depth dependent
expression for T(z). Note that for h + = our equation for T(z), Eq. (A.5¢),
gives the same result as does Appendix A of Crawford, et al. (1981). This
result is different from that given in Yuen & Lake (1982) (even after correc-
tions of minor misprints). This apparent discrepancy is related to the special,
almost-symmetric (with respect to k, and 53) structure of the Zakharov equation.
This structure allows some freedom in the choice of T(z), i.e., T(z)(g,gq,gztgs)
can be replaced by GI(Z)(EREJ’EZ’Es) + (1-a) T(z)(5354!53,52), with arbitrary o,
without altering the value of the integral on the r.h.s.'of Eq. (3.1). Any
T(z), obtained in some legitimate derivation can be made symmetric in gz,ga'by
choosing a = 0.5. This symmetric T(z), denoted by T, is a uniquely defined
function of kokyskookg and h and will be used in the sequel. -

Relation to Hasselmann's energy transfer model

The energy transfer equation for a finite-depth gravity-wave spectrum,
originally obtained in Hasselmann (1961), was rederived by Herterich & Hasselmann

............................
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. (1980). This last paper served as a reference for the verification of the i
expression for T, Eq. (A.5c). By reasonings similar to those in Longuet- %J
- Higgins (1976), but starting from the Zakharov equation (instead of the .cubic 3%

PS5  DUR

n:;
g Schrédinger equation, used by Longuet-Higgins) Ehe following energy transfer ﬁi
I equation is obtained '
t{ aC(k,t) T |
3 5t - HI T(Koky 2Ky ok3) [C(Ky)CC3) (C(K) + Clky)) - CCRIC(Ky ) (Clky )+
] )

-+ C(_3))]6(k + ky=ky-k )6(“*“ﬂ'w2'”3) dqugzdk3 (3.3)

where the wave-action spectrum C = IBIZ.

. “For strict resonance conditions, which are implied by the two § functions K
in Eq. (3.3), T is also symmetric in its two first arguments, k and 54. b

Herterich & Hasselmann's F(k,t) is given by w(g_)c(lg,t)/4gw2 and their inter-
action coefficient D is given by

2
T(koky Ky oky) (3.4)

0(53’52’5-1) g -

e e e

for resonating quartets.

The above identity, Eq. (3.4), has been verified numerically, and thus
serves as a mutual check of the rather lengthy algebra involved in the deriva-
tion of both models.

Relation to the nonlinear Schridinger equation

The derivation here follows the lines of Zakharov (1968), who showed
that, in the case of infinitely deep water, the cubic Schridinger equation
fs a particular case of the more general Zakharov equation. In the case of
finite water depth, the value of T(EJEJ’EZ’Ea)’ in the limit when ki.K,.k3
tend to k and h is fixed is not unique. In order to provide a better grasp
of this nonuniqueness, we include here an outline of the derivation of the

finite depth nonlinear Schrddinger equation.

............
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Restricting the analysis to narrow spectra around = (k 0), we
rewrite all wavenumbers as k, =k + v, ¥; = (55 A5) and IQI/k << 1,

Introducing a new variable A(&,t) = B(i,t)e'i[“’(l‘-)'“’(@)]t into Eq. (3.1)
gives

- 3A(y,t)
¥ = [u(k) - w(k )]A(,t) =

” [ Tlkg v, k oty Kol Koty (4 DAL AU )6 0t -tymty) gy

(3.5)

Equation (3.2) is then expanded to the lowest order in the spectral width
e wlk 1172 ¢ ik xq-wlk )t] = o
EREL g e A FITR A 2T c.c} -

i[kox]-w(ko)t]} (3.6)

__=_Re{a(5,t) e

where the complex wave envelope a(x,t) is the inverse Fourier transform of
A(y,t), multiplied by the coefficient (Zw(ko)/g)]/z. The frequency difference
on the 1.h.s. of Eq. (3.5) is replaced by its Taylor series expansion up to
the second order in the spectral width

N ¢ c!
oK) - alk)) = gy + A"+ ¥+ otlgl?) (3.7)

where cg ow /ak ’ cé = azmo/akz and wg = gkoth(koh). Multiplying
Eq. (3 5) by (Zw /SJ)“2 and taking its inverse Fourier transform yields
1[_3_a+ . 2a), fa 2%, Saofa

GRS I I

J (2o /2 (] + N aghye)x
- [[] Tkgrprsgan kot gty gtug ) Algg gy e 2

(3.8)

e & e ——— e = =
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One-can show that the Taylor series expansion of T, to the lowest order in the
spectral width, is given by

Tkookookooko) =Ty + Ty =Ty + Ty (3.92)
where
ks 4 . 2
T, =——2— [90" -106° + 9] ; o = th(k_h) (3.9b)
I " 523 oV
3 . 2 2 2 2
S koz 3 4c (¥35-9;) “+acpc (1-07) (¥5-4y) +g(1-0% )zl.lkj'!qlzh(hlij’iﬂ)
321%0 j=2 g|ws-vq [thih|w:-vq]) - cS(ws-vy )"
T 3—21?— [—9- - 124 130% - 207 (3.9d)
. K3 [2¢, + e (1-09)20° (w?_ -4’2 " (3.56)
B - ’ c = w, . 9@
i & gth(h|y,- yql)lwz - umu)? P
-gubst'ituting Eqs. (3.9d,e) ‘into Eq. (3.8 ) gives
22 g 3%, g 2% _ 2 .
(at gax]]+.2.k9;;2.+-29-a—xz—-u1|a| a+c9021c (3.10)
2 1
where
2.4 2
gk 2 k
a]-.'—s—w-g(;%-'|2+l3o-20).a.2 r[zl+(1-o)] (3.112,b)
g
and ( )
- (gy=ty)ox
oy 11 (pm0))A%(yy)Algy)e 2
1=- - @_11_92 (3.11c)

112 cg 2
-= |y lth(hlipy 1) - g7 (bpmiy)

Note that for any finite depth and for yj-y] +0,J=2,3, the values of
T TIV and that of the integrand in Eq. (3.11c) depend on angles ej. the
"directions” of approach to the limit, where

T I I - - .- L e R . S
R S 5 A, G i R L

te e e ——— a————
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This nonuniqueness disappears for iﬁfinitely deep water.

9¢
Regarding the integral I, Eq. (3.11c), one can show that I = —2

T Xyl
where ¢, is a solution of the following boundary value problem 112=0

2 2 2
9 ¢o 9 ¢o 9 %o
= t— t—>=0, forz<0 (3.122)
ax] ax2 oz
r
2 .2
8¢° C. 3 ¢ c,.9c 2
g° o_. -9°2 3|a| =
5z g axi] 20, ax, > *z=0 (3.12b)
3, A
52 =0, atz=-h (3.12¢)

Thus~¢o appears to be the mean flow pbtentia1. The system of Eqs. (3.10),
(3.12) was obtained by Iusim & Stiassnie (1982) using a multiple-scale approach.
In the particular case where the water depth is shallow compared to the group
length th(hlyﬂ-QJI) can be replaced by hjwj-§1| and the set of equations given
by Davey & Stewartson (1974) is recovered.” For water of infinite depth,
Stiassnie (1983) extended the analysis to one order higher in the spectral
width, and rederived Dysthe (1979) set of equations.

————w et r
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4. Linear stability of.a uniform wave train

This section deals with the mathematical formulation of one of the o
simplest possible non-trivial nonlinear interaction problems and its linearized ?ﬁ
(short time) solution. The smallest number of wave trains required to enable b
significant nonlinear interaction is three for class I as well as for class II
interactions. In what follows, we denote these 3 waves by the subscripts a, b,
and c. For anything exciting to happen, these 3 waves have to form a nearly
resonating “quartet" for a class I interaction, and a nearly resonating
"quintet” for a class II interaction, see Eqs. (2.18) and (2.21), respectively.

To form a “quartet", or a "quintet", out of three waves, one can “count"

one of the waves,ka,.twice for class I interactions, and three times for class
IT interactions.

The governing equations for class I interactions are a discretized form
of Eq. (3.1)

Y AT 2y + 2T E'B.B 1t
e " ( aaaal aI abab| b| acacIBcl )Ba 2 aabc a'b ce
(4.1a) .
dB ’ -in, t E
_b . 2 2 2 * 2 I
1 dt (ZTbabalBal + Tbbbble| * 2Tbcbc'BcI )Bb * TbcachBae
' ‘ (4.1b)
dB -iQ,t
¢ . 2 2 2 * 1
1 at (ZTcacaIBal + 2chcblab| * chccchI )Bc + chaaBszae :
(4.1¢c)

where nl = 2”a - Wy = W

For classIl 3-wave problems, which do not satisfy Eq. (2.18), Eq. (2.24)
similarly gives

dg . i, .t
pt } 2 2 2 (3) * 2 11
L dt * (Taaaalaal + 2TabableI * 2Tacacchl )Ba +2u (Ba) BbBce

aaabc
(4.2a)

4
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ds -iQ..t
b . 2 2 2 (2) 3 II
13dt (ZTbabaIBaI * Tbbbb'Bbl * 2Tbcbc'Bcl )Bb chaachBa
| (Q.Zb)
dB -iﬂ
c . 2 2 2 u(2) g*g3e 11
i dt (2Tcaca|8a| ZchcbIBbl * ch:cclscl )Bb * cbaaaBbBae ( )
4.2c

where QII = 3 2 ~Vp Y and nggbc is assumed to be symmetric with respect to b
and c.

To complete the mathematical formulation of either of the above systems

of equations, Eq. (4.1) or Eq. (4.2), one has to specify the following initial
conditions:

Ba(O) =b.» Bb(O) = by, and BC(O) =b. 3

where the relation between Bj‘and the actual physical amplitude aj is

a; s'l-(fi}]lz |B:]
J TmA\29 J

One can assume that the initial amplitude of one of the waves, which is
called "the carrier” and denoted by the subscript a, is much larger than the
amplitudes of the other two waves, denoted by b and c, to be called "the
disturbances”s |b,], |b | <<'|b,]. Only linear terms in the disturbances B,
B are retained, so that the carrier wave remains unaffected in this short time

, aaaalb l t
analysis, and is given by Ba = b'e ; ba is assumed %o be real

a
without loss of generality.

Class I instabilities:

The wave numbers of the carrier and the disturbances are
gi = ko(l, 0) (4.3a)

k = ko(j+p.,q), k. = ky(1-p;-q) (4.3b,c)

-------
-------
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so that Eq. (2.18a) is satisfied identically. The linearized version of Egs.
(4.1b,c) is

dB -iQ,t
N 2 * 2 1 '
14t ZTbaba baBb * Tbcachbae (4.42)
dB -ig, t
. _ € _ 2 * 2 I
15t = Teaca Pabe * Tebaabbla® (4.4b)
~ = 2
where QI QI + ZTaaaaba .
"Assuming a solution of the form
-1(0.58,+5;)t -1(0.50;-8;)t
By = bye 3 Bo = bee
one carn show that 61 must be given by
- . 2 1/2
6I (Tbaba Tcaca) ba * DI (4.5a)
-where
D, = [0.58 - (T, +T 2% -1 T, b} (4.5b)
I 3% baba ~ 'caca’"a bcaa chaa"a ’

Positive values of DI(p,q) correspond to stability regions in the p,q plane

and vice versa. The curves DI = 0 form the stability boundaries, and the point
where DI attains its minimum is called the most unstable mode. The value of

oy = (-Dllgko)1/2 for the most unstable mode is called the maximum growth-rate.
Class II instabilities

For this case, the carrier wave numbersgi, and‘_lgb are still given by Egs.
(4.3a,b) but

k. = k,(2-p, -q) (4.6)

so that Eq. (2.21a) is now satisfied identically.
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The linearized, short-time, version of Eqs. (4.2b,c) is

dB -iQ,,t :
_b_ 2 (2) o*.3 11 ~ .
i dt ZTbababaBb + chaachbae (?'73)
dB -, .t
. _C . 2 (2) ,*3 11
LT 2Tcacabch + UcbaaaBbbae‘ (4.7b)
- . 2
where QII = “II + 3Taaaaba'
Assuming, again, a solution of the form
-i(0.50,,+6,,)t -§(0.5Q;¢-8,,)t
- 11 °11 = 11 °II
Bb bbe _ . BC = bce
one finds that
. - 2 1/2
6II (Tbaba Tcaca)ba * DII (4.82)

o = 242 _ (2) ,(2) .6 '
DII [0.5:&1 (Tbaba * Tcaca)ba] chaaaucbaaaba (4.8b)

The stability boundary and maximum growth rate for class II interactions
are obtained from Eq. (4.8b). -

Results

In Fig. 1, we show the class I and class II instability regions (as shaded
zones) for koh = 2. The solid lines represent the calculated results and the
dashed curves are those of MclLean (1982b,Figs. 2b and 2c). In Fig. la,
koao = 0.195 (where a, is the first order amplitude of the carrier in Stokes'’
expansion), which is equivalent to (ka)m = 0.2 (the subscript m stands for
McLean). As a conversion formula, we used the following expression.

24ch5(koh) +'3
64sh6(k°h)

(ka), = k2, * (k,3,)? + 0(ka)® »  (4.9)

given by Sbjelbreia and Hendrickson (1961).

Fig. 1 about here please
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o

« “1In Fig. b, k3, = 0.326 (corresponding to (ka)_ = 0.35).

if The locations of the maximum growth rates (QI. qI), (pII’ dII)’ for class I

.? and class 11 instabilities, respectively, are marked by x for our results and

: by a dot for McLean's results, and their numerical values, as well as those of

- the maximum growth -rates Op» Opp 2re given in the figures. The overall agree-

'E ment in Fig. la (which is for actual amplitude, which is 47% of the theoretical

. maximum amplitude, Cokelet, 1977) is quite satisfactory. For smaller steep-

' ' nesses, the agreement becomes even better. On the other hand, for very steep

'; waves (in Fig. 1b, the’actua1 amplitude is 82% of the theoretical maximum

72 amplitude), the agreement is less impressive. Nevertheless, a somewhat better ¢
o agreement is obtained if we compare McLean's results for (ka)m = 0.35 with the ;
N artificially amplified value 3k, = 0.41, see Fig. 1e.’ f
:2 o A similar degree of agreement was obtained for several other water depths, N
L% and should give the reader some indication about the validity of the present

- model.

Fig. 2 about here please
X Figure 2, which is quite typical, is used to demonstrate some general features ;
as well as clarify some of the terminology which is used later. :

8 One can see that a certain similarity exists between class I and class 11 ;
ﬁ: instability regions. Both can be regarded as consisting of two domains: a 3
;3 wider band at lower values of p and usually a much narrower region at higher 3
;; -values of p. The first region will be referred to as the main region, and the ?
5 other as the secondary instability region. The qualitative difference between
X class I and class Il instability regions is that for class 1 the two domains
,i are usually disconnected while in the case of class II they are bound by a line
- of infinitesimal thickness. The secondary regions sometimes disappear completely,

g and for class I, the instability region in these cases terminates at some q> 0O
;Q (compare with Crawford, et al., 1981, for infinite water depth).
AN .
i: Figure 2 shows the three wave-number vectors Ea’ gb, 5c, as well as the
. location of four points of local maximum growth rates:

4
¥
X
»
»
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b A. Class I point (pI, qI) with local maximum growth rate 1>
‘\%l B. The secondary, Class I point (pi, q?) with Tocal maximum growth rate'o?.
-

C. Class II point (pII’ qII) with local maximum growth rate Orp» and
;iﬂ . D. The secondary Class II point (p?l. q?l) with local maximum growth rate cil.

For the particular data of Fig. 2 (koh = 0.35, k°a°= 0.04) orp > 01 > O:I;I >o§.
These inequalities are by no means general as will be shown in the sequel.
Nevertheless, for most cases, cII >'o§I.

Fig. 3 about here please

- Figure 3 is a summary of the results for Class I instabilities. Figures

0 3a and 3b give the values of P and qrs respectively, as functions of the water
f;ﬁ depth and wave steepness. The depth is expressed by th(k h) (the range covered
if is 0 357 <k h < =); and the wave steepness by Cokelet's (1977) ez, denoted here
by e (the. range 0< 82 < 0.7 is cavered).
{E} The isolines in Figs. 3 and 4 were drawn using interpolation and are based
:22 on about forty computed data points, almost equally distributed over the figure
- domain. Figure 3c is a plot of cT = max(ol, o?) isolines. Note that for the
o region confined by the broken lines o? > oy (sometimes by a factor of three),
o whereas the opposite is true in the outside region. For the case where
5$ ci > 01 p§ is in the range 1.05:1.30 and 9y = 0 which implies that the most
ORI unstable mode is two dimensional.
fﬁi ' | Fig. 4 about here please
jiz The results for Class II are given in Fig. 4. Note for this case P11 is
&:} always 0.5. Figure 4a gives the values of Qs and o1 1s shown in Fig. 4b.
;é;; For the domain above the dashed 1ine in Fig. 4b, orp > °I’ which indicates that
;;; for this region Class II instabilities may become dominant.
;l: The question whether the disturbances related to the highest value of o will
-:i. dominate the physical process remains open, and awaits additional evidence. The

2& authors hope that their current study of the long time evolution of Class I and
T Class 11 instabilities will throw some 1ight on this and on other relevant aspects
; of these important processes.




DS Br Eari te™) o, e e e e e e
.....................

APPENDIX

The kernels in Eq. (2.9)
2 -

2
W W
Sél%.,z,s”gg ‘].(()1,%.2.3"'2%{1-'31'2"]2’” ky| %+ 1Kok l+lk ko | 24|k tka 120} (AT2)

S601,2,3,4 ™ @"é 35 2,3, % kol 0G0 4 500 Jk]%Z' {w1:1+2}2
(A.1b)
where /
¥ 23" ‘l%.};-l 2lk1- ﬂ(‘%ll‘hl (5.0 + g +adyy + 0l )} (A1C)
(2) "‘1'3 p 52 (1
Y0,1,2,3,4 th(|k: Ih)---lk1 12 R (S L

- The interaction coefficients in Eq. (2.11)

Second order:

1)y ..
VO’] ’2 ZV‘O,.I ,2 + v] ,2,0 - (A.Za)
0,1,2 0,1,2 = '-0,2,1 ~ '-1,2,0 .
(3) .
0.1,2 = 2Y0,1,2* 1,2,0 (A.2¢)
where
¥0,1,2 " & (T—_wow.l] (kky + {5 (A.2d)
Third order:
(1) _
0 ]’2 3 w] ,2,‘0,3 w-O.] 2253 (A'3a)

o
[
.
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0,1,2,3 = ¥-0,-1,2,3 * ¥2,3,-0,-1 " %2,-1,-0,3 " %-0,2,-1,3 "%-0,3,2,-1 ~¥3,-1,2,-0
"(A.3b)

(3)
¥5.1,2.3

M _5,1,-2,3 " Yo0,3,-1,-2 * ¥.1,-2,-0.3 - P_q,3,-0,-2 (A.3¢)

(8)
%0.1,2,3 = ¥9,1,2,3 7 "1,2,0,3 (A.3d)

where

— "’2% ]/ZI kgl {2]k[th(]kq[h) + 2]k, |th(]k]h)
W = ] kilky| {2]k[th(]ks]h) + 2]k, |th(]k]h) -
0,1,2,3 64172 Woly 1 ] 1

1 2 2 2 2
- 3 th(lkIMth(lk; 1) [Wd,, + whyg + o, + 2,500 (A.3e)

Fourth order:

) .
x091’2’3a4 - 00.],2.3,4 + 80,1,2,3’4 (A-4a)

(2) -
X0,1,2,3,8 = %0,4,2,3,-1 ¥ 80,4,2,3,-1 * %.,3,2,-1,4 * B0,3,2,-1,4 *

+ ao,z,‘] ,394 - 80’2,"] ’3,4 - %,-] ,2’3,4 - BO,'] ’2,3,4 (A-4b)
(3) - - - -
xo,] ,2,3 ,4 - u0,3 ,4"’] ,’2 + BO ,3,4,-1,-2 uO,"1 ’3’-2 !4 809-1 ’3!-2’4
- uo,_'l ’4’39-2 - 80,-] ’4’3’-2 + %’3"2,-] ’4 - 80’3,-2,-1 ’4’ +

* %,4,-2,3,-1 " B0,4,-2,3,-1 ~ %,-1,-2,3,4 ¥ Po,-1,-2,3,4
(A.4c)

(4) - . ' - -
0,1’23394 -ao,_]’4’_2,_3 Boa']’4s‘2:3 + 00’4’_2’_3’_] BO,4,‘2,‘3,'1

X

~9,-1,-2,-3,4 * Bp,-1,-2,-3,4 ~ %,-1,-2,4,-3 ¥ B0,-1,-2,4,-3
(A.4d)

.........
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4(5)

0’1 ,2,3.4 =< %’-1 9.-29-39-4 * 80$-1 9-2’-39-4 (A.4e) f.

-

2
o 1 (U212 (2) +4

32 |
2 -
8 .. ]j [mow3w4}1/2 {:]_ '5(1) . (_'52054) [w]mz]z )
‘ ' 2 2 )
- T ey ) - i 122 e Ly 1) [k, [} (A.49)
“The kernels of Eq. (2.15)
(1) (1) (1) (1)
w1 ou)_Yo,1,203%243,3,2  Y0,143,2Y943,3,1
0,1.2,3 0,1,2,3 Woyg = Wy = Wq Wigg = Wy - Wg
| (2) (3)
- Y,m1-3,2%3-3,300 (A.5a)
ez Ty T ey
(1) (2) (1) (2) (2) (2)
#2) .2 _Yo2,31Y310,3 Yo,3-1,0%3-1,13  Y0,2-0,2M1-3,3.0
0,1,2,3 0,1,2,3 Wa_p * W - wg Wy p t Wy -y w3 ¥y -
(3) _ (3) (3)  (3) (1) (2) :
CY0010%-2-3,3.2 _ Y0,1,-01%03,3,2  Ver3,2,3%0,1,001 ]
Waeg Tty F wg Warz T Wyt Uy g3 = Wy T U3 ]
(A.5b) :
~ |
. 3(2) 2(2) :
To,1.2,3 = 95(T5.1,2,3 % Tp.1,3,2) (R.5c) »1

(2) (1) (2)  (2) (3)  (2) |
23) L3 _ Yo, aM1e2,001  Yo,1,-243 043,03 Vo,1,0-3%2-3,3,2 ,l
0,1:2,3  70,1,2,3  wyyp -y - wy  wy g twy - ug wpztugwy o
(3) (2) (1) “y(3) (1) (3) .
¥0,1-3,2Y1-3,3,0 _ Y0,3,-1-2-1-2,1,2  Vo,-1-2,3%-1-2,2,1
™ >

W Mttty e T oyt ey
(A.5d)

..........................
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(3) (1) (3) (1) - (2) (3) :
7)) Yoapn¥es30 Yo 1eso"is3sa  Yo,-2,30 00332
0.1,2,3  70.1,2,3 -~ wy 5 -6y - uy Glez =9 T U3 Wty Yy
(A.5e) -3
The kernels of Eq. (2.20)
(1) (1) (2) (1) (2) (1)
3(2) (2) s J0,344,2-1344,3,4%2.1,1,2 _ Y0,8-1,243%-1,1,0%:3,2,3

= X
0,1 ,2.,3,4 - T0,1,2,3,4 (m3+4-u3-w4)(m2_1+u1-m2). (u4_.l+w.|-w4) (m2+3-mz-m3)

(2) (2) (1) (2) (3) (2)
o J0,1-3,244%1-3,3.1Y244,2,8  V0,-3-4,2-1Y-3-4,3,4"2-1,1,2 3

(g 3030y T 0py gmgg) ™ ™ Mgy +ughg)lop_proyuy)
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Figure Captions

Fig. 1: Bands of instability for k h = 2. The instability boundaries’
are given by the solid lines and the points of maximum growth
rate are labeled by X. MclLean's results are marked by the
dashed lines and byes. (a) koa° = 0.195, (ka)m = 0.2;

(b) koao = 0.326, (ka)m = 0.35; (c) koao = 0.41, (ka)m = 0.35.
Fig. 2: Bands of i{stabiiity for koh = 0.35, koao = 0.04 and notation.

Fig. 3: Summary of results for Class 1 instabilities. (a) Isolines of
| p; (for € = 0, p; = 0); (b) Isolines of q; (for either c- = 0
or th(koh) = 1, qI = 0); (c) Isolines of 100m, the maximum

e growth rate (for ei = 0, o? = 0).

Fig. 4: Summary of results for Class II instabilities. (a) Isolines of

qu; (b) Isolines of 10011.
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